Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4-Dimethoxy-N-(3-nitrobenzylidene)aniline

Mehmet Akkurt,^a* Ali Asghar Jarrahpour,^b Malihe Aye,^b Mustafa Gençaslan^a and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 28 September 2008; accepted 20 October 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.119; data-to-parameter ratio = 16.7.

The title compound, C₁₅H₁₄N₂O₄, has two crystallographically independent molecules in the asymmetric unit. In both molecules, the nitro and the two methoxy substituents are coplanar with the benzene rings to which they are attached. The benzene rings are nearly coplanar, with dihedral angles between the two benzene rings of 10.39 (8) and 5.95 (8) $^{\circ}$ in the two molecules. The two independent molecules in the asymmetric unit are rotated with respect to each other such that the dihedral angles between equivalent benzene rings are 49.11 (8) and $63.93 (8)^{\circ}$. In the crystal structure, intermolecular C-H···O hydrogen-bond contacts and a weak $C-H\cdots\pi$ interaction are observed.

Related literature

For general background, see: Arora et al. (2002); Desai et al. (2001); El-masry et al. (2000); Jarrahpour & Khalili (2006); Jarrahpour et al. (2004); More et al. (2001); Phatak et al. (2000); Samadhiya & Halve (2001); Singh & Dash (1988); Tanaka & Shiraishi (2000). For related structures, see: Akkurt et al. (2005, 2008).

Experimental

Crystal data

$C_{15}H_{14}N_2O_4$	a = 8.6345 (8) Å
$M_r = 286.28$	b = 8.6540 (8) Å
Triclinic, $P\overline{1}$	c = 19.2304 (17) Å

Data collection

Stoe IPDS II diffractometer 21166 measured reflections Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.925, T_{\max} = 0.993$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ 380 parameters $wR(F^2) = 0.119$ H-atom parameters constrained S = 0.98 $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$ 6330 reflections

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8A \cdots O7^{i}$ $C14 - H14 \cdots O5^{ii}$ $C22 - H22A \cdots O1^{iii}$ $C28 - H28 \cdots O4^{iv}$ $C18 - H18 \cdots Cg1$	0.96	2.39	3.268 (3)	152
	0.93	2.55	3.206 (2)	128
	0.96	2.60	3.410 (3)	143
	0.93	2.57	3.222 (2)	128
	0.93	2.89	3.654 (2)	141

Symmetry codes: (i) x + 1, y + 1, z - 1; (ii) x, y - 1, z; (iii) -x + 1, -y + 1, -z; (iv) -x - 1, -y, -z + 1. Cg1 is the centroid of the C10-C15 ring.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2145).

References

- Akkurt, M., Jarrahpour, A., Aye, M., Gençaslan, M. & Büyükgüngör, O. (2008). Acta Cryst. E64, o2087.
- Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, 0776-0778.
- Altomare, A., Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Rizzi, R. (1999). J. Appl. Cryst. 32, 339-340.
- Arora, K., Gupta, A. & Agarwal, D. D. (2002). Asian J. Chem. 14, 1611–1615.
- Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90. El-masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Jarrahpour, A. A. & Khalili, D. (2006). Molecules, 11, 59-63.
- Jarrahpour, A. A., Motamedifar, M., Pakshir, K., Hadi, N. & Zarei, M. (2004). Molecules, 9, 815-824.
- More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.

Mo $K\alpha$ radiation

 $0.78 \times 0.36 \times 0.07 \text{ mm}$

6330 independent reflections

3703 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int}=0.065$

Phatak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 493–494. Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Singh, W. M. & Dash, B. C. (1988). *Pesticides*, **22**, 33–37. Stoe & Cie (2002). *X-AREA* and *X-RED32*. Stoe & Cie, Darmstadt, Germany. Tanaka, K. & Shiraishi, R. (2000). *Green Chem.* **2**, 272–273.

Acta Cryst. (2008). E64, o2175-o2176 [doi:10.1107/S1600536808034193]

3,4-Dimethoxy-N-(3-nitrobenzylidene)aniline

M. Akkurt, A. A. Jarrahpour, M. Aye, M. Gençaslan and O. Büyükgüngör

Comment

Schiff bases are widely used for synthetic purposes both by organic and inorganic chemists (Arora *et al.*, 2002) and have uses as biological, analytical, polymer and liquid crystalline materials (Tanaka & Shiraishi, 2000). Schiff bases are reported to show a variety of biological activities such as antibacterial (Jarrahpour & Khalili, 2006; Jarrahpour *et al.*, 2004; El-masry *et al.*, 2000), antifungal (More *et al.*, 2001; Singh & Dash, 1988), anticancer (Desai *et al.*, 2001; Phatak *et al.*, 2000) and herbicidal activities (Samadhiya & Halve, 2001). As an extension of our work on Schiff bases, we report here the crystal structure of the title compound (I).

The two molecules of (I) in the asymetric unit are shown in Fig. 1. In both molecules, the NO₂ and the two $-OCH_3$ substituents are coplanar with the benzene rings and the dihedral angles between the two benzene rings are 10.39 (8)° for C1–C6 and C10–C15 in molecule 1, and 5.95 (8)° for C16–C21 and C25–C30 in molecule 2. The dihedral angles between tequivalent benzene rings in the two independent molecules in the asymmetric unit are 49.11 (8)° for C1–C6 and C16–C21, and 63.93 (8)° for C10–C15 and C25–C30.

In the crystal structure, the packing is stabilized by intermolecular C—H···O type hydrogen contacts and a weak C—H··· π interaction (Table 1 and Fig. 2).

Experimental

A mixture of 3,4-dimethoxyaniline (3 mmol) and 3-nitrobenzaldehyde(3 mmol) was refluxed in EtOH for 4 h. After cooling the solution, the precipitate formed was filtered off and washed with ethanol to give the pure Schiff base as a dark yellow solid [yield 75%, m.p. 389–391 K]. IR(KBr) (cm⁻¹) 1616.2 (C=N). ¹H-NMR (CDCl₃) δ (p.p.m.) 3.92,3.94 (2 OCH₃, 2 s, 6H), 6.87–8.72 (ArH, m, 7H), 8.89 (HC=N, s, 1H). ¹³C-NMR (CDCl₃) δ (p.p.m.) 55.96, 56.11 (2 OCH₃), 105.62–149.47 (C=C aromatic carbons), 154.97 (C=N).

Refinement

All H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$.

Figures

Fig. 1. A view of the two independent molecules in the asymmetric unit of the title compound, with the atom-numbering scheme and 30% probability displacement ellipsoids.

Fig. 2. The packing and hydrogen contacts of (I) in the unitcell, down a axis. H atoms not involved in hydrogen bonding have been omitted, for clarity.

3,4-Dimethoxy-N-(3-nitrobenzylidene)aniline

Crystal data	
$C_{15}H_{14}N_2O_4$	Z = 4
$M_r = 286.28$	$F_{000} = 600$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.379 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 8.6345 (8) Å	Cell parameters from 17758 reflections
b = 8.6540 (8) Å	$\theta = 2.2 - 28.0^{\circ}$
c = 19.2304 (17) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 96.629 \ (7)^{\circ}$	T = 296 K
$\beta = 97.338 \ (7)^{\circ}$	Plate, yellow
$\gamma = 102.075 \ (7)^{\circ}$	$0.78 \times 0.36 \times 0.07 \text{ mm}$
$V = 1378.6 (2) \text{ Å}^3$	

Data collection

Stoe IPDS II diffractometer	6330 independent reflections
Monochromator: plane graphite	3703 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.065$
T = 296 K	$\theta_{\text{max}} = 27.6^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$h = -11 \rightarrow 11$
$T_{\min} = 0.925, T_{\max} = 0.993$	$k = -11 \rightarrow 11$
21166 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0559P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.119$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.98	$\Delta \rho_{max} = 0.15 \text{ e } \text{\AA}^{-3}$
6330 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
380 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001Fc^2\lambda^3/sin(2\Theta)]^{-1/4}$
Drimony stam site leastion: structure inverient direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0065 (13)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.62826 (14)	0.32088 (17)	-0.08996 (7)	0.0729 (5)
O2	0.49739 (15)	0.47609 (18)	-0.17819 (7)	0.0779 (5)
O3	-0.37252 (16)	0.1054 (2)	0.11097 (9)	0.0897 (6)
O4	-0.39393 (17)	-0.0126 (2)	0.20230 (8)	0.0972 (6)
N1	0.14725 (16)	0.23760 (17)	0.02524 (8)	0.0601 (5)
N2	-0.31661 (18)	0.04278 (19)	0.15877 (9)	0.0664 (6)
C1	0.24228 (19)	0.3003 (2)	-0.02440 (9)	0.0560 (6)
C2	0.39725 (19)	0.2781 (2)	-0.02885 (9)	0.0572 (6)
C3	0.47868 (19)	0.3383 (2)	-0.08055 (9)	0.0568 (6)
C4	0.4075 (2)	0.4223 (2)	-0.12873 (9)	0.0586 (6)
C5	0.2561 (2)	0.4444 (2)	-0.12409 (10)	0.0667 (7)
C6	0.1746 (2)	0.3826 (2)	-0.07202 (10)	0.0644 (6)
C7	0.7050 (2)	0.2369 (3)	-0.04221 (11)	0.0732 (7)
C8	0.4271 (3)	0.5528 (3)	-0.23003 (13)	0.0983 (10)
C9	0.2050 (2)	0.1789 (2)	0.07672 (10)	0.0599 (6)
C10	0.10483 (19)	0.1058 (2)	0.12568 (9)	0.0536 (6)

C11	-0.05710 (19)	0.10691 (19)	0.11873 (9)	0.0525 (5)
C12	-0.14762 (19)	0.03390 (19)	0.16476 (9)	0.0529 (5)
C13	-0.0856 (2)	-0.0437 (2)	0.21671 (9)	0.0604 (6)
C14	0.0736 (2)	-0.0444 (2)	0.22346 (10)	0.0675 (7)
C15	0.1685 (2)	0.0304 (2)	0.17885 (10)	0.0630 (6)
O5	0.06734 (14)	0.60630 (14)	0.26497 (6)	0.0629 (4)
O6	-0.07174 (16)	0.73981 (14)	0.35747 (7)	0.0704 (5)
O7	-0.4307 (2)	-0.31605 (19)	0.63291 (10)	0.1093 (7)
O8	-0.3373 (2)	-0.29259 (17)	0.53686 (9)	0.0982 (7)
N3	-0.19109 (17)	0.23924 (16)	0.45961 (7)	0.0581 (5)
N4	-0.38348 (19)	-0.23626 (19)	0.58865 (9)	0.0690 (6)
C16	-0.1260 (2)	0.33841 (18)	0.41193 (9)	0.0528 (5)
C17	-0.0490 (2)	0.2699 (2)	0.36272 (10)	0.0694 (7)
C18	0.0180 (2)	0.3553 (2)	0.31274 (10)	0.0655 (7)
C19	0.00864 (19)	0.51125 (19)	0.31179 (8)	0.0516 (5)
C20	-0.06863 (19)	0.58383 (18)	0.36230 (9)	0.0505 (5)
C21	-0.13542 (19)	0.49789 (19)	0.41131 (9)	0.0526 (5)
C22	0.1519 (3)	0.5404 (2)	0.21425 (11)	0.0764 (8)
C23	-0.1356 (3)	0.8214 (2)	0.41150 (12)	0.0798 (8)
C24	-0.2518 (2)	0.2938 (2)	0.51111 (9)	0.0558 (6)
C25	-0.31981 (19)	0.18957 (19)	0.56009 (9)	0.0526 (5)
C26	-0.31842 (19)	0.02855 (19)	0.55182 (9)	0.0538 (5)
C27	-0.38451 (19)	-0.0654 (2)	0.59839 (9)	0.0537 (5)
C28	-0.4530 (2)	-0.0053 (2)	0.65350 (9)	0.0631 (7)
C29	-0.4539 (2)	0.1540 (2)	0.66146 (10)	0.0702 (7)
C30	-0.3882 (2)	0.2513 (2)	0.61519 (10)	0.0633 (6)
H2	0.44510	0.22270	0.00310	0.0690*
Н5	0.20820	0.50050	-0.15570	0.0800*
H6	0.07180	0.39750	-0.06940	0.0770*
H7A	0.80890	0.23260	-0.05400	0.1100*
H7B	0.64150	0.13030	-0.04560	0.1100*
H7C	0.71650	0.29090	0.00530	0.1100*
H8A	0.50210	0.58450	-0.26140	0.1470*
H8B	0.39860	0.64560	-0.20760	0.1470*
H8C	0.33270	0.48090	-0.25660	0.1470*
H9	0.31420	0.18190	0.08390	0.0720*
H11	-0.10340	0.15610	0.08360	0.0630*
H13	-0.15050	-0.09410	0.24630	0.0730*
H14	0.11830	-0.09540	0.25820	0.0810*
H15	0.27710	0.03020	0.18450	0.0760*
H17	-0.04150	0 16430	0 36280	0.0830*
H18	0.06930	0.30650	0.27980	0.0790*
H21	-0.18720	0 54610	0 44430	0.0630*
H22A	0 18730	0.61850	0 18460	0.1150*
H22B	0.08220	0.44770	0.18560	0.1150*
H22C	0 24320	0 51080	0 23850	0.1150*
H23A	-0 13170	0.92910	0.40280	0.1200*
H23B	-0.07340	0.82270	0 45670	0.1200*
H23C	-0 24480	0.76760	0.41140	0.1200*
11230	0.27700	0.70700	0.11110	0.1200

H24	-0.25330	0.40160	0.51800	0.0670*
H26	-0.27330	-0.01550	0.51520	0.0650*
H28	-0.49730	-0.07100	0.68430	0.0760*
H29	-0.49910	0.19730	0.69830	0.0840*
H30	-0.39020	0.35900	0.62120	0.0760*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0571 (7)	0.1085 (10)	0.0671 (8)	0.0268 (7)	0.0286 (6)	0.0354 (7)
02	0.0699 (8)	0.1108 (11)	0.0679 (8)	0.0238 (7)	0.0317 (7)	0.0455 (8)
O3	0.0671 (8)	0.1186 (12)	0.1004 (12)	0.0323 (8)	0.0288 (8)	0.0475 (10)
O4	0.0799 (9)	0.1330 (13)	0.0907 (11)	0.0167 (9)	0.0519 (9)	0.0366 (10)
N1	0.0573 (8)	0.0702 (9)	0.0606 (9)	0.0152 (7)	0.0256 (7)	0.0221 (7)
N2	0.0637 (9)	0.0753 (10)	0.0642 (10)	0.0117 (8)	0.0301 (8)	0.0121 (8)
C1	0.0561 (9)	0.0598 (10)	0.0555 (10)	0.0099 (8)	0.0216 (8)	0.0144 (8)
C2	0.0560 (9)	0.0682 (11)	0.0539 (10)	0.0155 (8)	0.0205 (8)	0.0195 (8)
C3	0.0518 (9)	0.0680 (11)	0.0534 (10)	0.0112 (8)	0.0188 (8)	0.0132 (8)
C4	0.0571 (9)	0.0697 (11)	0.0524 (10)	0.0097 (8)	0.0209 (8)	0.0179 (8)
C5	0.0624 (11)	0.0797 (12)	0.0653 (12)	0.0183 (9)	0.0176 (9)	0.0284 (10)
C6	0.0529 (9)	0.0805 (12)	0.0681 (12)	0.0178 (9)	0.0230 (9)	0.0253 (10)
C7	0.0606 (11)	0.0953 (14)	0.0749 (13)	0.0283 (10)	0.0218 (10)	0.0271 (11)
C8	0.0993 (16)	0.142 (2)	0.0828 (16)	0.0479 (15)	0.0419 (13)	0.0677 (16)
C9	0.0525 (9)	0.0718 (11)	0.0608 (11)	0.0147 (8)	0.0211 (8)	0.0171 (9)
C10	0.0560 (9)	0.0566 (10)	0.0512 (10)	0.0128 (7)	0.0181 (8)	0.0098 (7)
C11	0.0573 (9)	0.0574 (10)	0.0468 (9)	0.0136 (7)	0.0173 (7)	0.0134 (7)
C12	0.0574 (9)	0.0535 (9)	0.0502 (9)	0.0100 (7)	0.0213 (8)	0.0075 (7)
C13	0.0768 (12)	0.0540 (10)	0.0528 (10)	0.0082 (8)	0.0233 (9)	0.0149 (8)
C14	0.0854 (13)	0.0651 (11)	0.0590 (11)	0.0227 (9)	0.0169 (10)	0.0213 (9)
C15	0.0633 (10)	0.0695 (11)	0.0625 (11)	0.0218 (9)	0.0149 (9)	0.0175 (9)
05	0.0773 (8)	0.0624 (7)	0.0604 (7)	0.0180 (6)	0.0350 (6)	0.0249 (6)
O6	0.1004 (9)	0.0575 (7)	0.0747 (8)	0.0342 (7)	0.0466 (7)	0.0314 (6)
07	0.1593 (15)	0.0864 (10)	0.1150 (13)	0.0412 (10)	0.0760 (12)	0.0647 (10)
08	0.1480 (14)	0.0737 (9)	0.0983 (12)	0.0427 (9)	0.0652 (11)	0.0337 (8)
N3	0.0721 (9)	0.0517 (8)	0.0526 (8)	0.0069 (7)	0.0223 (7)	0.0160 (6)
N4	0.0789 (10)	0.0673 (10)	0.0732 (11)	0.0208 (8)	0.0290 (9)	0.0341 (8)
C16	0.0634 (10)	0.0474 (9)	0.0478 (9)	0.0052 (7)	0.0166 (8)	0.0129 (7)
C17	0.1022 (14)	0.0473 (10)	0.0685 (12)	0.0185 (9)	0.0394 (11)	0.0166 (8)
C18	0.0878 (13)	0.0570 (10)	0.0609 (11)	0.0204 (9)	0.0349 (10)	0.0134 (8)
C19	0.0559 (9)	0.0537 (9)	0.0485 (9)	0.0097 (7)	0.0181 (8)	0.0153 (7)
C20	0.0560 (9)	0.0498 (9)	0.0507 (9)	0.0136 (7)	0.0157 (7)	0.0164 (7)
C21	0.0605 (9)	0.0531 (9)	0.0496 (9)	0.0142 (7)	0.0205 (8)	0.0141 (7)
C22	0.0904 (13)	0.0826 (13)	0.0715 (13)	0.0247 (11)	0.0485 (11)	0.0257 (10)
C23	0.1131 (16)	0.0639 (11)	0.0861 (14)	0.0428 (11)	0.0515 (13)	0.0273 (10)
C24	0.0638 (10)	0.0492 (9)	0.0559 (10)	0.0071 (7)	0.0170 (8)	0.0160 (8)
C25	0.0535 (9)	0.0561 (10)	0.0480 (9)	0.0059 (7)	0.0117 (7)	0.0143 (7)
C26	0.0574 (9)	0.0591 (10)	0.0483 (9)	0.0113 (8)	0.0173 (8)	0.0159 (8)
C27	0.0538 (9)	0.0614 (10)	0.0496 (9)	0.0114 (7)	0.0139 (7)	0.0204 (8)

C28	0.0650 (10)	0.0766 (13)	0.0535 (11)	0.0128 (9)	0.0224 (9)	0.0250 (9)
C29	0.0775 (12)	0.0793 (13)	0.0613 (12)	0.0184 (10)	0.0334 (10)	0.0155 (10)
C30	0.0711 (11)	0.0608 (11)	0.0612 (11)	0.0132 (9)	0.0225 (9)	0.0121 (9)
Geometric param	neters (Å, °)					
O1—C3		1.363 (2)	C7—I	H7A	0.96	500
O1—C7		1.418 (3)	C8—I	H8C	0.96	500
O2—C4		1.365 (2)	C8—I	H8B	0.96	00
O2—C8		1.404 (3)	C8—l	H8A	0.96	00
O3—N2		1.218 (2)	C9—I	H9	0.93	00
O4—N2		1.216 (2)	C11-	-H11	0.93	00
O5—C22		1.427 (3)	C13—	-H13	0.93	00
O5—C19		1.363 (2)	C14—	-H14	0.93	00
O6—C23		1.422 (3)	C15—	-H15	0.93	00
O6—C20		1.369 (2)	C16—	-C17	1.37	(3)
O7—N4		1.214 (2)	C16—	-C21	1.40	01 (2)
O8—N4		1.208 (2)	C17—	-C18	1.39	0 (3)
N1—C1		1.419 (2)	C18—	-C19	1.37	1 (2)
N1—C9		1.258 (2)	C19—	-C20	1.40	8 (2)
N2—C12		1.468 (2)	C20—	-C21	1.37	7 (2)
N3—C24		1.268 (2)	C24—	-C25	1.47	0 (2)
N3—C16		1.416 (2)	C25—	-C26	1.38	37 (2)
N4—C27		1.471 (2)	C25—	-C30	1.38	35 (2)
C1—C2		1.403 (2)	C26—	-C27	1.37	6 (2)
C1—C6		1.369 (2)	C27—	-C28	1.38	30 (2)
C2—C3		1.378 (2)	C28—	-C29	1.37	1 (2)
C3—C4		1.401 (2)	C29—	-C30	1.38	37 (3)
C4—C5		1.373 (3)	C17—	-H17	0.93	00
C5—C6		1.389 (3)	C18—	-H18	0.93	00
C9—C10		1.467 (2)	C21—	-H21	0.93	00
C10—C15		1.391 (2)	C22—	-H22A	0.96	000
C10-C11		1.390 (2)	C22—	-H22B	0.96	00
C11—C12		1.376 (2)	C22—	-H22C	0.96	600
C12—C13		1.380 (2)	C23—	-H23A	0.96	600
C13—C14		1.366 (3)	C23—	-H23B	0.96	600
C14—C15		1.383 (3)	C23—	-H23C	0.96	600
С2—Н2		0.9300	C24—	-H24	0.93	00
С5—Н5		0.9300	C26—	-H26	0.93	00
С6—Н6		0.9300	C28—	-H28	0.93	00
С7—Н7В		0.9600	C29—	-H29	0.93	00
С7—Н7С		0.9600	C30—	-H30	0.93	00
01…02		2.575 (2)	C21…	H23B	2.76	600
O1…C22 ⁱ		3.410 (3)	C22	H18	2.53	00
O2…O1		2.575 (2)	C23	H26 ^v	2.84	00
$O2 \cdots C22^i$		3.220 (3)	C23	H21	2.50	000
O3···C7 ⁱⁱ		3.373 (3)	C24…	H21	2.66	000
O4…C29 ⁱⁱⁱ		3.322 (2)	C28…	H14 ^{xii}	3.06	600

O4…C28 ⁱⁱⁱ	3.222 (2)	C29····H23C ^{xiii}	3.0400
O4···C3 ^{iv}	3.337 (2)	H2…H7B	2.2800
O5…C14 ^v	3.206 (2)	H2···O3 ^x	2.8500
O5…C30 ^{vi}	3.285 (2)	H2…C7	2.4900
O5…O6	2.5677 (18)	H2···H7C	2.2900
O6…O5	2.5677 (18)	H2…H9	2.0600
O7…C8 ^{vii}	3.268 (3)	H2…C9	2.6400
O8…C23 ^{viii}	3.274 (3)	H5…C8	2.5100
O1···H22A ⁱ	2.6000	H5…H8B	2.2600
O2…H22C ⁱ	2.6400	H5…O5 ^{ix}	2.8800
O3···H8B ^{ix}	2.7400	H5…H8C	2.3400
O3…H9 ⁱⁱ	2.9100	H6…H7A ⁱⁱ	2.4900
O3…H11	2.4100	H7A…H6 ^x	2.4900
O3…H7B ^{iv}	2.8000	H7B…H2	2.2800
O3…H2 ⁱⁱ	2.8500	H7B…C2	2.7200
O3…H7C ⁱⁱ	2.8200	H7B···O3 ^{iv}	2.8000
O4…H28 ⁱⁱⁱ	2.5700	H7C…H11 ^x	2.5700
O4…H13	2.4400	H7C····O3 ^x	2.8200
O4…H29 ⁱⁱⁱ	2.7600	H7C…C2	2.7300
O5…H14 ^v	2.5500	H7C…H2	2.2900
O5…H5 ^{ix}	2.8800	H7C···C5 ⁱ	2.9900
O6…H13 ^v	2.8000	H7C···C6 ⁱ	2.8700
O7…H28	2.4400	H8A…O7 ^{xi}	2.3900
O7…H30 ^{viii}	2.8900	H8A…H22C ⁱ	2.5100
O7…H8A ^{vii}	2.3900	H8B…C5	2.7200
O8…H23C ^{viii}	2.7100	H8B…H5	2.2600
O8…H24 ^{viii}	2.8800	H8B···O3 ^{ix}	2.7400
O8…H21 ^{viii}	2.7500	H8C····C19 ^{ix}	3.0200
O8…H26	2.4400	H8C…C5	2.7500
N2…C2 ^{iv}	3.403 (2)	H8C…H5	2.3400
N2···C3 ^{iv}	3.389 (2)	H8C···C20 ^{ix}	2.7700
N4…C24 ⁱⁱⁱ	3.380 (2)	H9…H15	2.4800
N1…H11	2.5700	H9····O3 ^x	2.9100
N3···H23B ^{vi}	2.8000	Н9…С2	2.5400
N3···H23A ^{viii}	2.9500	H9…H2	2.0600
N3…H26	2.5700	H11····C7 ⁱⁱ	2.9900
C2···N2 ^{iv}	3.403 (2)	H11···H7C ⁱⁱ	2.5700
C2···C3 ⁱ	3.594 (2)	Н11…ОЗ	2.4100
C3···C2 ⁱ	3.594 (2)	H11…N1	2.5700
C3···O4 ^{iv}	3.337 (2)	H13…O6 ^{viiii}	2.8000
C3····N2 ^{iv}	3.389 (2)	H13…O4	2.4400

C7…O3 ^x	3.373 (3)	H14····O5 ^{viii}	2.5500
C8…O7 ^{xi}	3.268 (3)	H14····C28 ^{xii}	3.0600
C13…C18	3.598 (2)	Н15…Н9	2.4800
C14···O5 ^{viii}	3.206 (2)	H17…C13	3.0900
C18…C13	3.598 (2)	H17···H23A ^{viii}	2.2800
C19····C30 ^{vi}	3.504 (2)	H18…C13	3.0800
C20···C24 ^{vi}	3.341 (2)	H18…C22	2.5300
C20···C25 ^{vi}	3.552 (2)	H18…H22B	2.3000
C21···C24 ^{vi}	3.498 (2)	H18…H22C	2.3500
C22····O2 ⁱ	3.220 (3)	H21…O8 ^v	2.7500
C22···O1 ⁱ	3.410 (3)	H21…C23	2.5000
C23…O8 ^v	3.274 (3)	H21…C24	2.6600
C24…C21 ^{vi}	3.498 (2)	H21…H23B	2.3600
C24····C27 ⁱⁱⁱ	3.599 (2)	H21…H23C	2.2200
C24…N4 ⁱⁱⁱ	3.380 (2)	H21…H24	2.0500
C24…C20 ^{vi}	3.341 (2)	H22A…O1 ⁱ	2.6000
C25…C20 ^{vi}	3.552 (2)	H22B…C11	3.0100
C25···C26 ⁱⁱⁱ	3.582 (2)	H22B…C18	2.7500
C26···C25 ⁱⁱⁱ	3.582 (2)	H22B…H18	2.3000
C26····C26 ⁱⁱⁱ	3.403 (2)	H22C…C18	2.7700
C27···C24 ⁱⁱⁱ	3.599 (2)	H22C…H18	2.3500
C28…O4 ⁱⁱⁱ	3.222 (2)	H22C····O2 ⁱ	2.6400
C29····O4 ⁱⁱⁱ	3.322 (2)	H22C····C8 ⁱ	3.0300
C30C19 ^{vi}	3.504 (2)	H22C···H8A ⁱ	2.5100
C30O5 ^{vi}	3.285 (2)	H23A…N3 ^v	2.9500
C2…H7C	2.7300	H23A…C17 ^v	3.1000
C2…H7B	2.7200	H23A…H17 ^v	2.2800
С2…Н9	2.5400	H23B…C21	2.7600
C5···H7C ⁱ	2.9900	H23B…H21	2.3600
C5…H8B	2.7200	H23B…N3 ^{vi}	2.8000
C5…H8C	2.7500	H23C…O8 ^v	2.7100
C6…H7C ⁱ	2.8700	H23C…C21	2.6900
C7…H2	2.4900	H23C…H21	2.2200
$C7 \cdots H11^x$	2.9900	H23C····C29 ^{xiii}	3.0400
C8…H5	2.5100	$H24 \cdots O8^{v}$	2.8800
C8···H22C ⁱ	3.0300	H24…C21	2.5500
С9…Н2	2.6400	H24…H21	2.0500
C11H22B	3.0100	H24···H30	2.4600
C13…H17	3.0900	H26····O8	2.4400
	3.0800 3.1000		2.5/00
C17···H23A ^{vm}	3.1000	H26···C23 ^{vm}	2.8400
C10 ¹¹ Π22C	2.7700	пzo…U/	2.4400

C18…H22B	2.7500	H28····O4 ⁱⁱⁱ	2.5700
C19····H8C ^{ix}	3.0200	H29…O4 ⁱⁱⁱ	2.7600
C20····H8C ^{ix}	2.7700	H30…O7 ^v	2.8900
C21…H24	2.5500	H30…H24	2.4600
C21…H23C	2.6900		
C3—O1—C7	117.12 (14)	C14—C13—H13	121.00
C4—O2—C8	117.65 (16)	С12—С13—Н13	121.00
C19—O5—C22	117.37 (13)	C13—C14—H14	120.00
C20—O6—C23	116.66 (14)	C15—C14—H14	120.00
C1—N1—C9	121.85 (15)	C14—C15—H15	119.00
O3—N2—O4	123.16 (17)	C10—C15—H15	119.00
O4—N2—C12	118.00 (16)	N3—C16—C17	116.25 (14)
O3—N2—C12	118.84 (16)	N3—C16—C21	125.11 (15)
C16—N3—C24	121.57 (14)	C17—C16—C21	118.65 (15)
O7—N4—O8	122.33 (17)	C16—C17—C18	121.30 (16)
O7—N4—C27	118.52 (16)	C17—C18—C19	120.26 (16)
O8—N4—C27	119.14 (16)	O5—C19—C18	125.71 (15)
N1—C1—C2	124.00 (15)	O5—C19—C20	115.11 (14)
N1—C1—C6	117.13 (15)	C18—C19—C20	119.18 (15)
C2—C1—C6	118.83 (16)	O6—C20—C19	115.11 (14)
C1—C2—C3	120.08 (16)	O6—C20—C21	124.80 (15)
O1—C3—C2	124.52 (16)	C19—C20—C21	120.09 (15)
C2—C3—C4	120.24 (16)	C16—C21—C20	120.52 (16)
O1—C3—C4	115.23 (15)	N3—C24—C25	121.11 (15)
O2—C4—C3	115.77 (15)	C24—C25—C26	121.08 (15)
C3—C4—C5	119.56 (16)	C24—C25—C30	120.06 (15)
O2—C4—C5	124.67 (16)	C26—C25—C30	118.85 (16)
C4—C5—C6	119.80 (17)	C25—C26—C27	119.36 (16)
C1—C6—C5	121.48 (16)	N4—C27—C26	118.80 (15)
N1—C9—C10	121.83 (16)	N4—C27—C28	118.86 (15)
C11—C10—C15	118.52 (16)	C26—C27—C28	122.34 (16)
C9—C10—C11	120.57 (15)	C27—C28—C29	118.05 (16)
C9—C10—C15	120.89 (16)	C28—C29—C30	120.76 (17)
C10-C11-C12	118.74 (16)	C25—C30—C29	120.65 (16)
C11—C12—C13	122.91 (16)	С16—С17—Н17	119.00
N2—C12—C11	117.96 (15)	C18—C17—H17	119.00
N2—C12—C13	119.11 (15)	C17—C18—H18	120.00
C12—C13—C14	118.19 (16)	C19—C18—H18	120.00
C13—C14—C15	120.30 (17)	C16—C21—H21	120.00
C10—C15—C14	121.31 (16)	C20—C21—H21	120.00
С3—С2—Н2	120.00	O5—C22—H22A	109.00
C1—C2—H2	120.00	O5—C22—H22B	109.00
C4—C5—H5	120.00	O5—C22—H22C	109.00
С6—С5—Н5	120.00	H22A—C22—H22B	110.00
С5—С6—Н6	119.00	H22A—C22—H22C	109.00
C1—C6—H6	119.00	H22B—C22—H22C	109.00
O1—C7—H7C	109.00	O6—C23—H23A	109.00
O1—C7—H7A	109.00	O6—C23—H23B	109.00

O1—C7—H7B	109.00	O6—C23—H23C	110.00
H7B—C7—H7C	109.00	H23A—C23—H23B	109.00
H7A—C7—H7B	109.00	H23A—C23—H23C	109.00
H7A—C7—H7C	110.00	H23B—C23—H23C	109.00
O2—C8—H8A	109.00	N3—C24—H24	119.00
O2—C8—H8C	109.00	C25—C24—H24	119.00
H8A—C8—H8B	109.00	С25—С26—Н26	120.00
O2—C8—H8B	110.00	С27—С26—Н26	120.00
H8B—C8—H8C	109.00	C27—C28—H28	121.00
H8A—C8—H8C	109.00	C29—C28—H28	121.00
N1—C9—H9	119.00	С28—С29—Н29	120.00
С10—С9—Н9	119.00	С30—С29—Н29	120.00
C10-C11-H11	121.00	С25—С30—Н30	120.00
C12—C11—H11	121.00	С29—С30—Н30	120.00
C7—O1—C3—C2	-1.0 (3)	N1—C9—C10—C15	174.86 (17)
C7—O1—C3—C4	179.84 (17)	C11-C10-C15-C14	1.0 (3)
C8—O2—C4—C5	-3.2 (3)	C9—C10—C15—C14	-177.38 (17)
C8—O2—C4—C3	176.40 (17)	C15-C10-C11-C12	0.2 (2)
C22—O5—C19—C18	-2.8 (2)	C9—C10—C11—C12	178.56 (16)
C22—O5—C19—C20	177.79 (16)	C10-C11-C12-C13	-1.5 (3)
C23—O6—C20—C21	6.2 (3)	C10-C11-C12-N2	177.18 (15)
C23—O6—C20—C19	-174.41 (17)	N2-C12-C13-C14	-177.09 (16)
C1—N1—C9—C10	-176.43 (16)	C11—C12—C13—C14	1.5 (3)
C9—N1—C1—C6	-170.48 (17)	C12—C13—C14—C15	-0.3 (3)
C9—N1—C1—C2	11.8 (3)	C13-C14-C15-C10	-0.9 (3)
O4—N2—C12—C13	3.4 (2)	C17—C16—C21—C20	0.0 (3)
O3—N2—C12—C13	-176.91 (17)	C21—C16—C17—C18	-0.4 (3)
O3—N2—C12—C11	4.4 (2)	N3-C16-C21-C20	-179.64 (16)
O4—N2—C12—C11	-175.31 (17)	N3-C16-C17-C18	179.29 (16)
C24—N3—C16—C21	-6.9 (3)	C16-C17-C18-C19	0.2 (3)
C16—N3—C24—C25	179.68 (16)	C17—C18—C19—C20	0.4 (3)
C24—N3—C16—C17	173.53 (17)	C17—C18—C19—O5	-178.99 (16)
O8—N4—C27—C28	173.22 (18)	C18—C19—C20—O6	179.79 (15)
O7—N4—C27—C28	-6.1 (3)	O5-C19-C20-C21	178.67 (15)
O7—N4—C27—C26	174.45 (18)	O5-C19-C20-O6	-0.7 (2)
O8—N4—C27—C26	-6.2 (3)	C18—C19—C20—C21	-0.8 (3)
N1-C1-C6-C5	-178.02 (16)	C19—C20—C21—C16	0.6 (3)
C6—C1—C2—C3	-0.1 (3)	O6—C20—C21—C16	179.96 (15)
N1—C1—C2—C3	177.54 (16)	N3-C24-C25-C26	0.6 (3)
C2—C1—C6—C5	-0.2 (3)	N3-C24-C25-C30	-178.79 (17)
C1—C2—C3—O1	-178.89 (16)	C24—C25—C26—C27	-179.43 (16)
C1—C2—C3—C4	0.2 (3)	C30—C25—C26—C27	-0.1 (2)
C2—C3—C4—O2	-179.55 (16)	C26—C25—C30—C29	0.2 (3)
O1—C3—C4—O2	-0.4 (2)	C24—C25—C30—C29	179.50 (16)
C2—C3—C4—C5	0.1 (3)	C25—C26—C27—N4	179.48 (16)
O1—C3—C4—C5	179.23 (16)	C25—C26—C27—C28	0.1 (3)
O2—C4—C5—C6	179.20 (17)	N4—C27—C28—C29	-179.54 (16)
C3—C4—C5—C6	-0.4 (3)	C26—C27—C28—C29	-0.1 (3)
C4—C5—C6—C1	0.5 (3)	C27—C28—C29—C30	0.2 (3)

N1-C9-C10-C11	-3.5 (3)	C28—C29—C30—C25	-0.2 (3)
Symmetry codes: (i) $-x+1$, $-y+1$, -z; (ii) x-1, y, z; (iii) -x-	-1, -y, -z+1; (iv) $-x, -y, -z;$ (v) $x, y+1, z;$ (v)	$x_i) - x, -y+1, -z+1; (v_i) x-1,$
<i>y</i> -1, <i>z</i> +1; (viii) <i>x</i> , <i>y</i> -1, <i>z</i> ; (ix) - <i>x</i> ,	-y+1, -z; (x) x+1, y, z; (x)	xi) x+1, y+1, z-1; (xii) -x, -y, -z+1; (xiii) -	x-1, -y+1, -z+1.

Hydrogen-bond geometry (Å,	°)
<i>y</i> = 8 = 1 = 8 = 1 = <i>y</i> (<i>y</i>	/

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C8—H8A···O7 ^{xi}	0.96	2.39	3.268 (3)	152
C14—H14···O5 ^{viii}	0.93	2.55	3.206 (2)	128
C22—H22A···O1 ⁱ	0.96	2.60	3.410 (3)	143
C28—H28····O4 ⁱⁱⁱ	0.93	2.57	3.222 (2)	128
C18—H18…Cg1	0.93	2.89	3.654 (2)	141

Symmetry codes: (xi) x+1, y+1, z-1; (viii) x, y-1, z; (i) -x+1, -y+1, -z; (iii) -x-1, -y, -z+1.

Fig. 2

